Controlling Growth and Osteogenic Differentiation of Osteoblasts on Microgrooved Polystyrene Surfaces
نویسندگان
چکیده
Surface topography is increasingly being recognized as an important factor to control the response of cells and tissues to biomaterials. In the current study, the aim was to obtain deeper understanding of the effect of microgrooves on shape and orientation of osteoblast-like cells and to relate this effect to their proliferation and osteogenic differentiation. To this end, two microgrooved polystyrene (PS) substrates, differing in the width of the grooves (about 2 μm and 4 μm) and distance between individual grooves (about 6 μm and 11 μm, respectively) were fabricated using a combination of photolithography and hot embossing. MG-63 human osteosarcoma cells were cultured on these microgrooved surfaces, with unpatterned hot-embossed PS substrate as a control. Scanning electron- and fluorescence microscopy analyses showed that on patterned surfaces, the cells aligned along the microgrooves. The cells cultured on 4 μm-grooves / 11 μm-ridges surface showed a more pronounced alignment and a somewhat smaller cell area and cell perimeter as compared to cells cultured on surface with 2 μm-grooves / 6 μm-ridges or unpatterned PS. PrestoBlue analysis and quantification of DNA amounts suggested that microgrooves used in this experiment did not have a strong effect on cell metabolic activity or proliferation. However, cell differentiation towards the osteogenic lineage was significantly enhanced when MG-63 cells were cultured on the 2/6 substrate, as compared to the 4/11 substrate or unpatterned PS. This effect on osteogenic differentiation may be related to differences in cell spreading between the substrates.
منابع مشابه
Gene co-expression network analysis identifies BRCC3 as a key regulator in osteogenic differentiation of osteoblasts through a β-catenin signaling dependent pathway
Objective(s): The prognosis of osteoporosis is very poor, and it is very important to identify a biomarker for prevention of osteoporosis. In this study, we aimed to identify candidate markers in osteoporosis and to investigate the role of candidate markers in osteogenic differentiation. Materials and Methods: Using Weighted Gene Co-Expression Network analysis, we identified three hub genes mig...
متن کاملPara-Nonylphenol Impairs Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells by Influencing the Osteoblasts Mineralization
Objective(s)Para-Nonylphenol (p-NP) is used in many industries and our previous study showed that p-NP causes a reduction in rats bone marrow mesenchymal stem cells (MSCs) viability. The aim of this study was to investigate the effect of p-NP on osteogenic differentiation of MSCs.Materials and MethodsMSCs were isolated and expanded to 3rd passage, then cultured in DMEM supplemented with osteoge...
متن کاملDi-ethanolamine Might Cause Bone-related Complications Due to the Reduction of Osteogenic Differentiation and Induction of Oxidative Stress
Di-ethanolamine (DEA) is a well-known environmental pollutant used in manufacturing soap, detergent, body lotion, and other sanitary products. DEA has been reported to cause cytotoxicity in different tissue and cell, but no study was found to explain the toxic effect of DEA on rat bone marrow mesenchymal stem cells (BMSCs) differentiation. Thus in the present study, the differentiation property...
متن کاملOsteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies.
Osteoblasts respond to microarchitectural features of their substrate. On smooth surfaces (tissue culture plastic, tissue culture glass, and titanium), the cells attach and proliferate but they exhibit relatively low expression of differentiation markers in monolayer cultures, even when confluent. When grown on microrough Ti surfaces with an average roughness (Ra) of 4-7 mum, proliferation is r...
متن کاملCalcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells
Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medi...
متن کامل